Универсальный усилитель мощности на tda7293. Усилитель низкой частоты (УНЧ) на микросхеме TDA7250 Описание выводов микросхемы TDA7293

В данном FAQ мы постараемся рассмотреть все вопросы связанные с популярной в последнее время микросхемой УНЧ TDA7293/7294. Информация взята с одноименной темы форума сайта Паяльник, http://forum.cxem.net/index.php?showtopic=8669. Всю информацию собрал воедино и оформил ~D"Evil~, за что ему огромное спасибо. Параметры микросхемы, схема включения, печатная плата, все это .

1) Блок питания
Как ни странно, но у многих проблемы начинаются уже здесь. Две самых распространенных ошибки:
- Однополярное питание
- Ориентирование на напряжение вторичной обмотки трансформатора (действующее значение).

Вот схема блока питания

(нажмите для увеличения)

1.1 Трансформатор - должен иметь две вторичные обмотки . Либо одна вторичная обмотка с отводом от средней точки (встречается очень редко). Итак, если у вас трансформатор с двумя вторичными обмотками, то их необходимо соединить как показано на схеме. Т.е. начало одной обмотки с концом другой (начало обмотки обозначается черной точкой, на схеме это показано). Перепутаете, ничего не будет работать. Когда соединили обе обмотки, проверяем напряжение в точках 1 и 2. Если там напряжение, равное сумме напряжений обеих обмоток, то вы соединили все правильно. Точка соединения двух обмоток и будет "общим" (земля, корпус, GND, называйте как хотите). Это первая распространенная ошибка, как мы видим: обмоток должно быть две, а не одна.

Теперь вторая ошибка: В даташите (тех. описание микросхемы) на микросхему TDA7294 указано: для нагрузки 4Ома рекомендуется питание +/-27.

Ошибка в том, что люди часто берут трансформатор с двумя обмотками 27В, этого сделать нельзя!!!

Когда вы покупаете трансформатор, на нем пишут действующее значение , и вольтметр вам тоже показывает действующее значение. После того, как напряжение выпрямляется, им заряжаются конденсаторы. А заряжаются они уже до амплитудного значения которое в 1.41 (корень из 2ух) раза больше действующего значения. Стало быть, чтобы на микросхеме было напряжение 27В, то обмотки трансформатора должны быть на 20В (27 / 1,41 = 19,14 Т.к. на такое напряжение трансформаторы не делают, то возьмем ближайшее: 20В). Суть думаю ясна.
Теперь о мощности: для того, чтобы TDA выдала свои 70Вт, ей необходим трансформатор мощностью минимум 106Вт (КПД у микросхемы 66%), желательно больше. Например для стерео усилителя на TDA7294 очень хорошо подойдет трансформатор мощностью 250Вт

1.2 Выпрямительный мостик

Тут как правило вопросов не возникает, но все же. Я лично предпочитаю ставить выпрямительные мосты, т.к. не надо возиться с 4мя диодами, так удобнее. Мостик должен обладать следующими характеристиками: обратное напряжение 100В, прямой ток 20А. Ставим такой мостик и не паримся, что в один "прекрасный" день он сгорит. Такого мостика хватает на две микросхемы и емкость конденсаторов в БП 60"000мкФ (когда конденсаторы заряжаются, через мостик проходит очень высокий ток)

1.3 Конденсаторы

Как видно, в схеме БП используется 2 типа конденсаторов: полярные (электролитические) и неполярные (пленочные). Неполярные (С2, С3) необходимы для подавления ВЧ помех. По емкости ставьте что будет: от 0,33мкФ до 4мкФ. Желательно ставить наши К73-17, довольно неплохие конденсаторы. Полярные (С4-С7) необходимы для подавления пульсации напряжения, да и к тому же отдают свою энергию при пиках нагрузки усилителя (когда трансформатор не может обеспечить требуемый ток). По емкости до сих пор люди спорят, сколько все таки нужно. Я на опыте понял, что на одну микросхему, достаточно 10000 мкФ в плечо. Напряжение конденсаторов: выбирайте сами, в зависимости от питания. Если у вас трансформатор на 20В, то выпрямленное напряжение будет 28,2В (20 х 1,41 = 28,2), конденсаторы можно поставить на 35В. С неполярными то же самое. Вроде бы ничего не упустил...

В итоге у нас получился БП содержащий 3 клеммы: "+" , "-" и "общий" С БП закончили, переходим к микросхеме.

2) Микросхемы TDA7294 и TDA7293

2.1.1 Описание выводов микросхемы TDA7294

1 - Сигнальная земля


4 - Тоже сигнальная земля
5 - Вывод не используется, можете его смело отламывать (главное не перепутайте!!!)

7 - "+" питания
8 - "-" питания


11 - Не используется
12 - Не используется
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.1.2 Описание выводов микросхемы TDA7293

1 - Сигнальная земля
2 - Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 - Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 - Тоже сигнальная земля
5 - Клиппметр, в принципе абсолютно ненужная функция
6 - Вольтодобавка (Bootstrap)
7 - "+" питания
8 - "-" питания
9 - Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
10 - Вывод Mute. Предназначен для ослабления входного сигнала (грубо говоря, отключается вход микросхемы)
11 - Вход оконечного каскада усиления (используется при каскадировании микросхем TDA7293)
12 - Сюда подключается конденсатор ПОС (С5) когда напряжение питания превышает +/-40В
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.2 Разница между микросхемами TDA7293 и TDA7294
Такие вопросы встречаются постоянно, итак, вот основные отличия TDA7293:
- Возможность параллельного включения (фигня полная, нужен мощный усилитель - собирайте на транзисторах и будет вам счастье)
- Повышенная мощность (на пару десятков ватт)
- Повышенное напряжение питания (иначе предыдущий пункт был бы не актуален)
- Еще вроде говорят что она вся сделана на полевых транзисторах (а толку то?)
Вот вроде бы все отличия, от себя лишь добавлю что у всех TDA7293 наблюдается повышенная глючность - слишком часто горят.

Еще один распространенный вопрос: Можно ли заменить TDA7294 на TDA7293?

Ответ: Можно, но:
- При напряжении питания <40В заменять можно спокойно (конденсатор ПОС между 14ой и 6ой лапами как был, так и остается)
- При напряжении питания >40В, только необходимо изменить местоположение конденсатора ПОС. Он должен быть между 12ой и 6ой лапами микросхемы, иначе возможны глюки в виде возбуда и т.д.

Вот как это выглядит в даташите на микросхему TDA7293:

Как видно из схемы, конденсатор подключается либо между 6ой и 14ой лапами (напряжение питания <40В) либо между 6-ой и 12-ой лапами (напряжение питания >40В)

Есть такие экстремалы, запитывают TDA7294 от 45В, потом удивляются: а че горит? Горит потому, что микросхема работает на пределе. Сейчас тут мне скажут: "У меня +/-50В и все работает, не гони!!!", ответ прост: "Вруби на максимальную громкость и засеки время секундомером"

Если у вас нагрузка 4 Ома, то оптимальное питание будет +/- 27В (обмотки трансформатора на 20В)
Если у вас нагрузка 8 Ом, то оптимальное питание будет +/- 35В (обмотки трансформатора на 25В)
С таким напряжением питания микросхема будет работать долго и без глюков (у меня выдерживала КЗ выхода в течение минуты, и ничего не сгорело, как обстоят дела с этим у товарищей экстремалов я не знаю, они молчат)
И еще: если вы все таки решили сделать напряжение питания больше нормы, то не забывайте: от искажений вы все равно никуда не денетесь Больше 70Вт (напряжение питания +/-27В) с микросхемы выжимать бесполезно, т.к. слушать этот скрежет невозможно!!!

Вот график зависимости искажений (THD) от выходной мощности (Pout)

Как мы видим, при выходной мощности 70Вт искажения у нас в районе 0,3-0,8% - это вполне приемлемо и на слух не заметно. При мощности 85Вт искажения уже 10%, это уже хрип и скрежет, в общем слушать звук при таких искажениях невозможно. Отсюда получается, что увеличивая напряжение питания, вы увеличиваете выходную мощность микросхемы, а толку то? Все равно после 70Вт слушать не возможно!!! Так что примите к сведению, плюсов тут никаких нет.

2.4.1 Схемы включения - оригинальная (обычная)

Вот схемка (взята из даташита)

C1 - Лучше ставить пленочный конденсатор К73-17, емкость от 0,33мкФ и выше (чем больше емкость, тем меньше ослабляется низкая частота т.е. всеми любимые басы).
С2 - Лучше ставить 220мкФ 50В - опять таки, басы станут лучше
С3, С4 - 22мкФ 50В - определяют время включения микросхемы (чем больше емкость, тем дольше длительность включения)
С5 - вот он, конденсатор ПОС (как его подключать я написал в пункте 2.1 (в самом конце). Его тоже лучше взять 220мкФ 50В (отгадайте с 3ех раз...басы будут лучше)
С7, С9 - Пленочные, номинал любой: 0,33мкФ и выше на напряжение 50В и выше
С6, С8 - Можно не ставить, у нас в БП уже стоят конденсаторы

R2, R3 - Определяют коэффициент усиления. По умолчанию он равен 32 (R3 / R2), лучше не менять
R4, R5 - По сути та же функция, что и у C3, С4

На схеме есть непонятные клеммы VM и VSTBY - их необходимо подключить к ПЛЮСУ питания, иначе ничего работать не будет.

2.4.2. Схемы включения - мостовая

Схема тоже взята из даташита

По сути эта схема представляет из себя 2 простых усилителя, с той лишь разницей, что колонка (нагрузка) включена между выходами усилителя. Есть еще пара нюансов, о них чуть позже. Такая схема может использоваться когда у вас нагрузка 8 Ом (Оптимальное питание микросхем +/-25В) или 16Ом (Оптимальное питание +/-33В). Для нагрузки 4Ома делать мостовую схему бессмысленно, микросхемы не выдержат ток - результат думаю известен.

Как я сказал выше, мостовая схема собирается из 2-ух обычных усилителей. При этом, вход второго усилителя подключается к земле. Еще прошу обратить внимание на резистор который подключен между 14й "ногой" первой микросхемы (на схеме: вверху) и 2-ой "ногой" второй микросхемы (на схеме: внизу). Это резистор обратной связи, если его не подключить, усилитель работать не будет.

Еще здесь изменены цепи Mute (10-я "нога") и Stand-By (9-я "нога"). Это не принципиально, делайте так, как вам нравится. Главное чтобы на лапах Mute и St-By было напряжение больше 5В, тогда микросхема будет работать.

2.4.3 Схемы включения - умощнение микросхемы

Мой вам совет: не страдайте фигней, нужна большая мощность - делайте на транзисторах
Возможно позже напишу как умощнение делается.

2.5 Пара слов о функциях Mute и Stand-By

Mute - По своей сути, эта функция микросхемы позволяет отключить вход. Когда на выводе Mute (10-я лапа микросхемы) напряжение от 0В до 2,3В производится ослабление входного сигнала на 80 дБ. При напряжении на 10-й лапе более 3,5В ослабления не происходит
- Stand-By - Перевод усилителя в дежурный режим. Эта функция отключает питание выходных каскадов микросхемы. При напряжении на 9-ом выводе микросхемы более 3ех вольт, выходные каскады работают в своем нормальном режиме.

Реализовать управление этими функциями можно двумя способами:

В чем разница? По сути своей ни в чем, делайте так, как вам удобно. Я лично выбрал первый вариант (раздельное управление).

Выводы обоих схем должны быть подключены либо к "+" питания (в этом случае микросхема включена, звук есть), либо к "общему" (микросхема выключена, звука нет).

3) Печатная плата

Вот печатная плата для TDA7294 (TDA7293 тоже можно ставить, при условии что напряжение питания не превышает 40В) в формате Sprint-Layout: скачать .

Плата нарисована со стороны дорожек, т.е. при печати надо зеркалить (для лазерно-утюжного метода изготовления печатных плат)

Печатную плату я делал универсальную, на ней можно собрать как простую схему, так и мостовую. Для просмотра необходима программа Sprint Layout 4.0.

Пробежимся по плате и разберем что к чему относится.

3.1 Основная плата (в самом верху) - содержит 4 простых схемы с возможностью объединения их в мостовые. Т.е. на этой плате можно собрать либо 4 канала, либо 2 мостовых канала, либо 2 простых канала и один мостовой. Универсал одним словом.

Обратите внимание на резистор 22к обведенный красным квадратом, его необходимо впаивать если вы планируете делать мостовую схемы, так же необходимо впаять входной конденсатор как показано на разводке (крестик и стрелочка). Радиатор можно купить в магазине Чип и Дип, продается там такой 10х30см, плата делалась как раз под него.

3.2 Плата Mute/St-By

Так уж получилось что для этих функций я сделал отдельную плату. Все подключать по схеме. Mute (St-By) Switch - это переключатель (тумблер), на разводке показано какие контакты замыкать чтобы микросхема работала.

(Нажмите для увеличения)

Сигнальные провода от платы Mute/St-By на основной плате подключать так

Провода питания (+V и GND) подключать в блок питания.

Конденсаторы можно поставить 22 мкФ 50В (не 5 штук в ряд, а одну штуку. Количество конденсаторов зависит от количества микросхем, управляемых этой платой).

3.3 Платы БП

Тут все просто, впаиваем мостик, электролитические конденсаторы, подключаем провода, НЕ ПУТАЕМ ПОЛЯРНОСТЬ!!!

Надеюсь сборка не вызовет затруднений. Печатная плата проверена, все работает. При правильной сборке усилитель запускается сразу.

4) Усилитель не заработал с первого раза

Ну что же, бывает. Отключаем усилитель от сети и начинаем искать ошибку в монтаже, как правило в 80% случаев ошибка в неправильном монтаже.

Если ничего не найдено, то снова включаем усилитель в сеть, берем вольтметр и проверяем напряжения:

Начнем с напряжения питания: на 7ой и 13ой лапе должен быть "+" питания; На 8ой и 15ой лапах должен быть "-" питания. Напряжения должны быть одинаковой величины (По крайне мере разброс должен быть не больше 0,5В).
- На 9ой и 10ой лапах должно быть напряжение больше 5В. Если напряжение меньше, значит вы ошиблись в плате Mute/St-By (перепутали полярность, тумблер не так поставили)
- При замкнутом на землю входе, на выходе усилителя должно быть 0В. Если там напряжение больше 1В, то тут уже что-то с микросхемой (возможно брак или левая микросхема)

Если все пункты в порядке, то микросхема обязана работать. Проверьте уровень громкости источника звука. Я когда только собрал этот усилитель, включаю его в сеть... звука нет... через 2 секунды все заиграло, знаете почему? Момент включения усилителя пришелся на паузу между треками, вот так вот бывает.

Другие советы:

Умощнение. TDA7293/94 вполне заточена для подключения нескольких корпусов в параллель, правда есть один ньюансик - выхода надо соединять через 3...5 сек после подачи напряжения питания, иначе могут потребоваться новые м/с.

Дополнение от Колесникова А.Н.

Я в процессе оживления усилителя на TDA7294 обнаружил, что если "нуль" сигнала сидит на корпусе усилителя, то оказывается к.з. между "минусом" и "нулём" питания. Оказалось, вывод 8 напрямую связан с радиатором микросхемы и, согласно электрической схеме, с выводом 15 и "минусом" источника питания.

Смотрите другие статьи раздела .

Микросхема TDA7293 является логическим завершением сборки TDA7294, и не смотря на то, что цоколевка почти одинаковая, имеется ряд улучшений по сравнению с ее предшественницей. В первую очередь следует отметить увеличенное напряжение до величины ±50В, добавлены защиты от перегрева кристалла и КЗ в нагрузке УНЧ, реализована возможность параллельного соединения нескольких микросхем для увеличения выходной мощности. THD при 50Вт не выше 0,1% в диапазоне 20…15000Гц. Напряжение питания ±12…±50В, ток выходного каскада в пике достигает 10А.

Существует несколько известных модификаций данной конструкции. Тут применен всего один выходной каскад, который выполнен на широко используемой в среде радиолюбителей комплиментарной паре 2SC5200 + 2SA1943. Поэтому, схема способна выдавать на выходе до 120 ватт звуковой мощности. Микросборка почти не греется, а вот транзисторы выходного каскада греются очень сильно, так как работают в режиме АВ, следовательно, их необходимо разместить на радиаторе.

Если вы решили собрать эту конструкцию УНЧ для широкополосной акустики, то использовать этот вариант схемы не советую. Коэффициент нелинейных искажений на выходе достаточно высок, поэтому такой УНЧ более подходит для питания сабвуфера. При использовании TDA7293 с максимально разрешенным напряжением питания, мощность усилителя увеличиться до 140 ватт, но при этом микросхема уже начнет греться.

Предлагаемый УНЧ обладает очень низким коэффициентом нелинейных искажений и уровнем собственных шумов. Собранная конструкция имеет небольшие габариты.


Катушку L1 – бескаркасная, трехслойная, изготавливается своими руками и содержит по десять витков провода ПЭВ-1.0 в каждом слое. Намотку необходимо вести на оправке 12 мм. Приблизительная индуктивность – 5 мкГн. Перечень и номиналы радиокомпонентов, а также чертеж печатной платы смотри в архиве выше.

Схема из журнала радио разработана на базе многократно повторенного радиолюбителями и хорошо зарекомендовавшего себя УНЧ. Цепочка R1С1 образует входной фильтр низкой частоты, необходимый для подавления ВЧ помех. Входная емкость С2 задает нижнюю границу усиливаемого интервала частот. С указанной на рисунке номиналом эта частота около 7 Гц. Оксидные емкости, находящиеся в цепи прохождения сигнала, для улучшения работы на частотах выше 5-7 кГц зашунтированы пленочными конденсаторами: это С4, С5 в цепи отрицательной обратной связи и С8, С9 в роли вольтодобавки. Также пленочные емкости С10 и С12 необходимы в блоке питания. Цепи R12С6 и R8R9C3VD1 осуществляют правильную последовательность чередования режимов Stand-By и Mute при подачи и отключении питающего напряжения, чтобы исключить раздражающие щелканья в динамиках. Цепь R14С7 необходима для устойчивой работы схемы на реальную нагрузку.


Цепь комбинированной ООС по напряжению и току образуется резисторами R3, R4, R6, R7, R10, R11, R15. Из них сопротивления R4 и R11 задают ООСН, резистор R15 является датчиком тока, а остальные сопротивления задают глубину ООСТ, причем возможен вариант как схемы подачи ООСТ по рисунку 4а, так и по рисунку. 4б (смотри архив с подробным описанием). Вариант включения цепи ООСТ задается перемычкой между точками 1, 2, 3.

Сопротивление R2 необходимо для разделения общего провода входной и выходной цепей. Вывод 5 TDA7293 - выход датчика ограничения сигнала и используется для подсоединения соответствующего индикатора или электронного регулятора усиления.

Усилитель собран на печатной плате, чертеж выполненный в программе спринт лайаут имеется в общем архиве. В конструкции применены резисторы номинальной мощностью 0,125 Вт, кроме сопротивления R15 - 5 Вт, его требуется монтировать на печатную плату (ПП) с малым зазором для улучшения охлаждения. Это же относится к сопротивлениям R10 и R14. Особое внимание необходимо уделить сопротивлению R2. Его номинал должно быть в диапазоне 1-5 Ом, и перед монтажом на ПП, его рекомендуется проверить мультиметром. При отсутствии подходящего сопротивления его можно заменить обычной перемычкой. Все остальные резисторы, кроме входящих в цепи отрицательных ОС, могут иметь небольшой разброс сопротивления до 20%.

Диод VD1 следует применить с максимальным обратным напряжением не менее 50 В. Автор взял диод 1N4007. Микросборку необходимо устанавливать на теплоотвод площадью не менее 500 см 2 с применением термопасты. Следует учитывать, что корпус TDA7293 соединен с минусовой шиной питания. Поэтому необходимо взять изолирующую прокладку, либо изолировать теплотвод от корпуса конструкции.

Усилитель питается от двухполярного источника питания вариант схемы которого прилагается в архиве.

Напряжение питания 1 -10…-40В; Напряжение питания 2 +10…+40В; Ток выходной 4А, покоя 60мА; Р вых 140 Вт; R вх 100кОм; Коэффициент усиления 30дБ; Полоса частот 20-20000Гц; Сопротивление нагрузки 8 Ом.


В данном FAQ мы постараемся рассмотреть все вопросы связанные с популярной в последнее время микросхемой УНЧ TDA7293/7294. Информация взята с одноименной темы форума сайта Паяльник. Всю информацию собрал воедино и оформил , за что ему огромное спасибо. Параметры микросхемы, схема включения, печатная плата, все это . Datasheet микросхемы TDA7293 и TDA7294 можно .

1) Блок питания
Как ни странно, но у многих проблемы начинаются уже здесь. Две самых распространенных ошибки:
- Однополярное питание
- Ориентирование на напряжение вторичной обмотки трансформатора (действующее значение).

Вот схема блока питания:

Что мы здесь видим?

1.1 Трансформатор - должен иметь ДВЕ ВТОРИЧНЫЕ ОБМОТКИ . Либо одна вторичная обмотка с отводом от средней точки (встречается очень редко). Итак, если у вас трансформатор с двумя вторичными обмотками, то их необходимо соединить как показано на схеме. Т.е. начало одной обмотки с концом другой (начало обмотки обозначается черной точкой, на схеме это показано). Перепутаете, ничего не будет работать. Когда соединили обе обмотки, проверяем напряжение в точках 1 и 2. Если там напряжение, равное сумме напряжений обеих обмоток, то вы соединили все правильно. Точка соединения двух обмоток и будет "общим" (земля, корпус, GND, называйте как хотите). Это первая распространенная ошибка, как мы видим: обмоток должно быть две, а не одна.
Теперь вторая ошибка: В даташите (тех. описание микросхемы) на микросхему TDA7294 указано: для нагрузки 4Ома рекомендуется питание +/-27. Ошибка в том, что люди часто берут трансформатор с двумя обмотками 27В, ЭТОГО ДЕЛАТЬ НЕЛЬЗЯ!!! Когда вы покупаете трансформатор, на нем пишут действующее значение , и вольтметр вам тоже показывает действующее значение. После того, как напряжение выпрямляется, им заряжаются конденсаторы. А заряжаются они уже до амплитудного значения которое в 1.41 (корень из 2ух) раза больше действующего значения. Стало быть, чтобы на микросхеме было напряжение 27В, то обмотки трансформатора должны быть на 20В (27 / 1,41 = 19,14 Т.к. на такое напряжение трансформаторы не делают, то возьмем ближайшее: 20В). Суть думаю ясна.
Теперь о мощности: для того, чтобы TDA выдала свои 70Вт, ей необходим трансформатор мощностью минимум 106Вт (КПД у микросхемы 66%), желательно больше. Например для стерео усилителя на TDA7294 очень хорошо подойдет трансформатор мощностью 250Вт

1.2 Выпрямительный мостик - Тут как правило вопросов не возникает, но все же. Я лично предпочитаю ставить выпрямительные мосты, т.к. не надо возиться с 4мя диодами, так удобнее. Мостик должен обладать следующими характеристиками: обратное напряжение 100В, прямой ток 20А. Ставим такой мостик и не паримся, что в один "прекрасный" день он сгорит. Такого мостика хватает на две микросхемы и емкость конденсаторов в БП 60"000мкФ (когда конденсаторы заряжаются, через мостик проходит очень высокий ток)

1.3 Конденсаторы - Как видно, в схеме БП используется 2 типа конденсаторов: полярные (электролитические) и неполярные (пленочные). Неполярные (С2, С3) необходимы для подавления ВЧ помех. По емкости ставьте что будет: от 0,33мкФ до 4мкФ. Желательно ставить наши К73-17, довольно неплохие конденсаторы. Полярные (С4-С7) необходимы для подавления пульсации напряжения, да и к тому же отдают свою энергию при пиках нагрузки усилителя (когда трансформатор не может обеспечить требуемый ток). По емкости до сих пор люди спорят, сколько все таки нужно. Я на опыте понял, что на одну микросхему, достаточно 10000 мкФ в плечо. Напряжение конденсаторов: выбирайте сами, в зависимости от питания. Если у вас трансформатор на 20В, то выпрямленное напряжение будет 28,2В (20 х 1,41 = 28,2), конденсаторы можно поставить на 35В. С неполярными то же самое. Вроде бы ничего не упустил...
В итоге у нас получился БП содержащий 3 клеммы: "+" , "-" и "общий" С БП закончили, переходим к микросхеме.

2) Микросхемы TDA7294 и TDA7293

2.1.1 Описание выводов микросхемы TDA7294
1 - Сигнальная земля


4 - Тоже сигнальная земля
5 - Вывод не используется, можете его смело отламывать (главное не перепутайте!!!)

7 - "+" питания
8 - "-" питания


11 - Не используется
12 - Не используется
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.1.2 Описание выводов микросхемы TDA7293
1 - Сигнальная земля
2 - Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 - Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 - Тоже сигнальная земля
5 - Клиппметр, в принципе абсолютно ненужная функция
6 - Вольтодобавка (Bootstrap)
7 - "+" питания
8 - "-" питания
9 - Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
10 - Вывод Mute. Предназначен для ослабления входного сигнала (грубо говоря, отключается вход микросхемы)
11 - Вход оконечного каскада усиления (используется при каскадировании микросхем TDA7293)
12 - Сюда подключается конденсатор ПОС (С5) когда напряжение питания превышает +/-40В
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.2 Разница между микросхемами TDA7293 и TDA7294
Такие вопросы встречаются постоянно, итак, вот основные отличия TDA7293:
- Возможность параллельного включения (фигня полная, нужен мощный усилитель - собирайте на транзисторах и будет вам счастье)
- Повышенная мощность (на пару десятков ватт)
- Повышенное напряжение питания (иначе предыдущий пункт был бы не актуален)
- Еще вроде говорят что она вся сделана на полевых транзисторах (а толку то?)
Вот вроде бы все отличия, от себя лишь добавлю что у всех TDA7293 наблюдается повышенная глючность - слишком часто горят.

Еще один распространенный вопрос: Можно ли заменить TDA7294 на TDA7293?
Ответ: Можно, но:
- При напряжении питания <40В заменять можно спокойно (конденсатор ПОС между 14ой и 6ой лапами как был, так и остается)
- При напряжении питания >40В, только необходимо изменить местоположение конденсатора ПОС. Он должен быть между 12ой и 6ой лапами микросхемы, иначе возможны глюки в виде возбуда и т.д.

Вот как это выглядит в даташите на микросхему TDA7293:

Как видно из схемы, конденсатор подключается либо между 6ой и 14ой лапами (напряжение питания <40В) либо между 6ой и 12ой лапами (напряжение питания >40В)

2.3 Напряжение питания
Есть такие экстремалы, запитывают TDA7294 от 45В, потом удивляются: а че горит? Горит потому, что микросхема работает на пределе. Сейчас тут мне скажут: "У меня +/-50В и все работает, не гони!!!", ответ прост: "Вруби на максимальную громкость и засеки время секундомером"

Если у вас нагрузка 4 Ома, то оптимальное питание будет +/- 27В (обмотки трансформатора на 20В)
Если у вас нагрузка 8 Ом, то оптимальное питание будет +/- 35В (обмотки трансформатора на 25В)
С таким напряжением питания микросхема будет работать долго и без глюков (у меня выдерживала КЗ выхода в течение минуты, и ничего не сгорело, как обстоят дела с этим у товарищей экстремалов я не знаю, они молчат)
И еще: если вы все таки решили сделать напряжение питания больше нормы, то не забывайте: от искажений вы все равно никуда не денетесь Больше 70Вт (напряжение питания +/-27В) с микросхемы выжимать бесполезно, т.к. слушать этот скрежет невозможно!!!

Вот график зависимости искажений (THD) от выходной мощности (Pout):

Как мы видим, при выходной мощности 70Вт искажения у нас в районе 0,3-0,8% - это вполне приемлемо и на слух не заметно. При мощности 85Вт искажения уже 10%, это уже хрип и скрежет, в общем слушать звук при таких искажениях невозможно. Отсюда получается, что увеличивая напряжение питания, вы увеличиваете выходную мощность микросхемы, а толку то? Все равно после 70Вт слушать не возможно!!! Так что примите к сведению, плюсов тут никаких нет.

2.4.1 Схемы включения - оригинальная (обычная)

Вот схемка (взята из даташита):

C1 - Лучше ставить пленочный конденсатор К73-17, емкость от 0,33мкФ и выше (чем больше емкость, тем меньше ослабляется низкая частота т.е. всеми любимые басы).
С2 - Лучше ставить 220мкФ 50В - опять таки, басы станут лучше
С3, С4 - 22мкФ 50В - определяют время включения микросхемы (чем больше емкость, тем дольше длительность включения)
С5 - вот он, конденсатор ПОС (как его подключать я написал в пункте 2.1 (в самом конце). Его тоже лучше взять 220мкФ 50В (отгадайте с 3ех раз...басы будут лучше)
С7, С9 - Пленочные, номинал любой: 0,33мкФ и выше на напряжение 50В и выше
С6, С8 - Можно не ставить, у нас в БП уже стоят конденсаторы

R2, R3 - Определяют коэффициент усиления. По умолчанию он равен 32 (R3 / R2), лучше не менять
R4, R5 - По сути та же функция, что и у C3, С4

На схеме есть непонятные клеммы VM и VSTBY - их необходимо подключить к ПЛЮСУ питания, иначе ничего работать не будет.

2.4.2. Схемы включения - мостовая

Схема тоже взята из даташита:

По сути эта схема представляет из себя 2 простых усилителя, с той лишь разницей, что колонка (нагрузка) включена между выходами усилителя. Есть еще пара нюансов, о них чуть позже. Такая схема может использоваться когда у вас нагрузка 8Ом (Оптимальное питание микросхем +/-25В) или 16Ом (Оптимальное питание +/-33В). Для нагрузки 4Ома делать мостовую схему бессмысленно, микросхемы не выдержат ток - результат думаю известен.
Как я сказал выше, мостовая схема собирается из 2ух обычных усилителей. При этом, вход второго усилителя подключается к земле. Еще прошу обратить внимание на резистор который подключен между 14й "ногой" первой микросхемы (на схеме: вверху) и 2ой "ногой" второй микросхемы (на схеме: внизу). Это резистор обратной связи, если его не подключить, усилитель работать не будет.
Еще здесь изменены цепи Mute (10я "нога") и Stand-By (9я "нога"). Это не принципиально, делайте так, как вам нравится. Главное чтобы на лапах Mute и St-By было напряжение больше 5В, тогда микросхема будет работать.

2.4.3 Схемы включения - умощнение микросхемы
Мой вам совет: не страдайте фигней, нужна большая мощность - делайте на транзисторах
Возможно позже напишу как умощнение делается.

2.5 Пара слов о функциях Mute и Stand-By
- Mute - По своей сути, эта функция микросхемы позволяет отключить вход. Когда на выводе Mute (10я лапа микросхемы) напряжение от 0В до 2,3В производится ослабление входного сигнала на 80дБ. При напряжении на 10й лапе более 3,5В ослабления не происходит
- Stand-By - Перевод усилителя в дежурный режим. Эта функция отключает питание выходных каскадов микросхемы. При напряжении на 9-ом выводе микросхемы более 3ех вольт, выходные каскады работают в своем нормальном режиме.

Реализовать управление этими функциями можно двумя способами:

В чем разница? По сути своей ни в чем, делайте так, как вам удобно. Я лично выбрал первый вариант (раздельное управление)
Выводы обоих схем должны быть подключены либо к "+" питания (в этом случае микросхема включена, звук есть), либо к "общему" (микросхема выключена, звука нет).

3) Печатная плата
Вот печатная плата для TDA7294 (TDA7293 тоже можно ставить, при условии что напряжение питания не превышает 40В) в формате Sprint-Layout: .

Плата нарисована со стороны дорожек, т.е. при печати надо зеркалить (для )
Печатную плату я делал универсальную, на ней можно собрать как простую схему, так и мостовую. Для просмотра необходима программа .
Пробежимся по плате и разберем что к чему относится:

3.1 Основная плата (в самом верху) - содержит 4 простых схемы с возможностью объединения их в мостовые. Т.е. на этой плате можно собрать либо 4 канала, либо 2 мостовых канала, либо 2 простых канала и один мостовой. Универсал одним словом.
Обратите внимание на резистор 22к обведенный красным квадратом, его необходимо впаивать если вы планируете делать мостовую схемы, так же необходимо впаять входной конденсатор как показано на разводке (крестик и стрелочка). Радиатор можно купить в магазине Чип и Дип, продается там такой 10х30см, плата делалась как раз под него.
3.2 Плата Mute/St-By - Так уж получилось что для этих функций я сделал отдельную плату. Все подключать по схеме. Mute (St-By) Switch - это переключатель (тумблер), на разводке показано какие контакты замыкать чтобы микросхема работала.

Сигнальные провода от платы Mute/St-By на основной плате подключать так:

Провода питания (+V и GND) подключать в блок питания.
Конденсаторы можно поставить 22мкФ 50В (не 5 штук в ряд, а одну штуку. Количество конденсаторов зависит от количества микросхем, управляемых этой платой)
3.3 Платы БП. Тут все просто, впаиваем мостик, электролитические конденсаторы, подключаем провода, НЕ ПУТАЕМ ПОЛЯРНОСТЬ!!!

Надеюсь сборка не вызовет затруднений. Печатная плата проверена, все работает. При правильной сборке усилитель запускается сразу.

4) Усилитель не заработал с первого раза
Ну что же, бывает. Отключаем усилитель от сети и начинаем искать ошибку в монтаже, как правило в 80% случаев ошибка в неправильном монтаже. Если ничего не найдено, то снова включаем усилитель в сеть, берем вольтметр и проверяем напряжения:
- Начнем с напряжения питания: на 7ой и 13ой лапе должен быть "+" питания; На 8ой и 15ой лапах должен быть "-" питания. Напряжения должны быть одинаковой величины (По крайне мере разброс должен быть не больше 0,5В).
- На 9ой и 10ой лапах должно быть напряжение больше 5В. Если напряжение меньше, значит вы ошиблись в плате Mute/St-By (перепутали полярность, тумблер не так поставили)
- При замкнутом на землю входе, на выходе усилителя должно быть 0В. Если там напряжение больше 1В, то тут уже что-то с микросхемой (возможно брак или левая микросхема)
Если все пункты в порядке, то микросхема обязана работать. Проверьте уровень громкости источника звука. Я когда только собрал этот усилитель, включаю его в сеть...звука нет...через 2 секунды все заиграло, знаете почему? Момент включения усилителя пришелся на паузу между треками, вот так вот бывает.

Другие советы с форума:

Умощнение. TDA7293/94 вполне заточена для подключения нескольких корпусов в параллель, правда есть один ньюансик - выхода надо соединять через 3...5 сек после подачи напряжения питания, иначе могут потребоваться новые м/с.

(С) Михаил aka ~D"Evil~ Санкт-Петербург, 2006г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Br1 Диодный мост 1 В блокнот
С1-С3 Конденсатор 0.68 мкФ 3 В блокнот
С4-С7 10000 мкФ 4 В блокнот
Tr1 Трансформатор 1 В блокнот
Схема включения - оригинальная (обычная)
Аудио усилитель

TDA7294

1 В блокнот
С1 Конденсатор 0.47 мкФ 1 В блокнот
С2, С5 Электролитический конденсатор 22 мкФ 2 В блокнот
С3, С4 Электролитический конденсатор 10 мкФ 2 В блокнот
С6, С8 Электролитический конденсатор 100 мкФ 2 В блокнот
С7, С9 Конденсатор 0.1 мкФ 2 В блокнот
R1, R3, R4 Резистор

22 кОм

3 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R5 Резистор

10 кОм

1 В блокнот
VM, VSTBY Выключатель 2 В блокнот
Источник аудиосигнала 1 В блокнот
Динамик 1 В блокнот
Схема включения - мостовая.
Аудио усилитель

TDA7294

2 В блокнот
Выпрямительный диод

1N4148

1 В блокнот
Конденсатор 0.22 мкФ 2 В блокнот
Конденсатор 0.56 мкФ 2 В блокнот
Электролитический конденсатор 22 мкФ 4 В блокнот
Электролитический конденсатор 2200 мкФ 2 В блокнот
Резистор

680 Ом

2

Непрерывные эксперименты и поиски новых схемных решений позволили создать весьма универсальный высококачественный усилитель мощности на базе уже "приевшейся" микросхемы TDA7293. Отличием от всех остальных схемных реализаций данный вариант усилителя позволяет использовать как неинвертирующее включение, так и инвертирующее. Кроме этого в усилитель введен регулятор, который позволяет плавно переходить из типового режима работы в режим источника тока управляемого напряжением (ИТУН) т.е. максимально согласовать усилитель с акустической системой и получить совершенно новый, более качественный звук.
Широкий диапазон питающих напряжений делает возможным построение усилителя мощностью от 20 до 100 Вт, причем при мощностях до 50 Вт у микросхемы TDA7294 коф. нелинейных искажения не превышает 0,05%, что позволяет отнести усилитель на базе этих имс к разряду Hi-Fi. Принципиальная схема приведена на рисунке 1.

Рисунок 1.

Техническе характеристики усилителя мощности на микросхеме:

Напряжение питания
Макс. выходная мощность на нагрузку 4 Ома при THD 0,5%

70 Вт (±27В)

80 Вт (±29В)

Макс. выходная мощность на нагрузку 4 Ома при THD 10%

100 Вт (±29В)

110 Вт (±30В)

Макс. выходная мощность на нагрузку 8 Ома при THD 0,5%

70 Вт (±35В)

80 Вт (±37В)

Макс. выходная мощность на нагрузку 8 Ома при THD 10%

100 Вт (±38В)

140 Вт (±45В)

THD при Pвых от 0,1 до 50 Вт в диапазоне 20...15000Гц
Скорость нарастания выходного напряжения
Сопротивление входа не менее

Принципиальная схема схема включения усилителя мощности на м/с TDA7293 TDA7294 чертеж печатной платы прямое включение инверсное включение ИТУН источник тока управляемый напряжением характеристики усилителя на микросхеме TDA7293 TDA7294 описание УМЗЧ TDA7293.pdf TDA7294.pdf

Как видно из характеристик усилители на TDA7294 TDA7293 очень универсальны и могут с успехом использоваться в любых усилителях мощности, где требуются хорошие характеристики УМЗЧ.
Варианты включения приведены на рисунках 2...7. Обратите внимание на положение движка подстроечного резистора и наличие-отсутствие перемычки в правой части платы (чуть ниже середины).


Рисунок 2 - типовое не инвертирующее включение усилителя мощности.


Рисунок 3 - типовое инвертирующее включение усилителя мощности


Рисунок 4 - не инвертирующее включение с возможностью плавного перехода из типового режима
работы в режим ИТУН


Рисунок 5 - инвертирующее включение TDA 7293 с возможностью плавного перехода из
типового режима работы в режим ИТУН

Практическая польза режима ИТУН очевидна - это источник тока, управляемый напряжением. Другими словами динамическая головка принимает участиве в формировании обратной связи усилителя, что значительно увеличивает качество звучания. Используя усилитель на TDA7293 в режиме ИТУН получается значительно перевесить отношение ЦЕНА-КАЧЕСТВО в пользу качества. Однако эта система не лишена недостатков - режим ИТУН рассчитан на работу с широкополосными динамическими головками. Если АС содержит две полосы, причем НЧ динамик не имеет дросселя в фильтре, то ИТУН работает боле-менее корректно. А вот при работе на трехполосную акустику TDA7293 в режим ИТУН переводить не следует - влияние большого количества установленный в АС конденсаторов и индуктивностей сильно усложняет правильную оценку реально протекающего через АС тока и в результате появляются сильные искажения сигнала.
Однако ни кто не запрещает переводить данный усилитель мощности в комборежим - при работе в типовом режиме вращение подстроечного резистора добавлять влияние на ООС напряжения падения на токоизмерительном резисторе, добиваясь оптимального звучания и согласования TDA7293 и акустической системы.


Рисунок 6 - мостовая схема включения двух усилителей мощности


Рисунок 7 - схема параллельного включения двух усилителей мощности (только для УМ7293)


Рисунок 8 - внешний вид усилителя мощности на микросхеме TDA7293 (TDA7294)

Остается лишь добавить, что есть некотрые доброходы, утверждающие, что микросхемы TDA 7294 в мост дают 200 Вт на 4 Ома или что TDA7294 может работать в параллельном включении . Подобная информация не имеет ничего общего с микросхемой TDA7294 , поскольку такие мощности (200Вт) просто выведут микросхему из строя из за теплового пробоя, поскольку кристал просто не успеет отдать тепло даже на фланец микросхемы. Ну а попутать TDA7294 c TDA7293 конечно можно, но абсолютно не нужно, поскольку они хоть и стоят в одном технологическом ряду, но имеют ОЧЕНЬ сильные отличия. Если у кого возникли сомнения по поводу написанного, то милости просим ознакомится с даташником на обе микросхемы и сделать поправочку на результаты многочисленых опытов .
На рисунке 8 приведен внешний вид усилителя на микросхемах TDA7293 и TDA7294, а ниже ссылка на видео о том как самостоятено собрать этот универсальный усилитель мощности.

PS Бесконечные баталии на тему какая из микросхем лучше (TDA7294 или LM3886) пока ни чем не закончились, на вкус и цвет - товарищей нет...

Подробно о том, какой мощности нужен блок питания для усилителя мощности можно помотреть на видео ниже. Для примера взят усилитель STONECOLD, однако данный замер дает понимание тог, что мощность сетевого трансформатора может быть меньше мощности усилителя примерно на 30%.


Адрес администрации сайта:

НЕ НАШЕЛ, ЧТО ИСКАЛ? ПОГУГЛИ:


Top