Радиолюбительский блок питания. Мощный лабораторный блок своими руками Хороший блок питания радиолюбителя своими руками

О том, насколько остро нуждаются ремонтники и радиолюбители в лабораторных блоках питания для своих мастерских, свидетельствует неуклонно возрастающий спрос на эти изделия. Поскольку на практике нередко требуется наличие нескольких блоков питания, а цены на готовые изделия слишком высокие, не говоря уже о дефицитности лабораторных блоков питания , то выгодно заниматься самостоятельным изготовлением таких блоков питания.

В данной статье рассматривается весьма простая и доступная в повторении конструкция блока питания, не содержащая дефицитных или дорогостоящих комплектующих, что позволяет изготовить ее любому радиолюбителю. Наличие в этом блоке питания функции стабилизации тока в нагрузке серьезно расширяет возможности использования его на практике. Причем не только при ремонтных и лабораторных работах, но и зарядке самых различных аккумуляторов. Если же учесть, что в рассматриваемом блоке питания предусмотрена возможность плавной регулировки стабилизируемого тока в нагрузке (от минимального значения и до максимума), то сфера использования этого БП становится весьма обширной.

Усложненная схемотехника большинства современных блоков питания (БП) препятствует ее практическому воплощению, поскольку при ее реализации требуются затраты времени и материальных средств, а это в наше время является едва ли не основными факторами, препятствующими самостоятельному изготовлению сложных конструкций. Данная же конструкция не требует больших затрат.

Схема стабилизатора напряжений (СН) может работать, как в режиме стабилизации напряжения, так и в режиме стабилизации тока.

Выходное стабилизированное напряжение устанавливается в пределах 0…18 В. выходной стабилизируемый ток (в режиме стабилизации тока) устанавливается в пределах 0 … 14 А) .

Основной недостаток многих схем со стабилизацией тока, заключается в том, что после отключения СН от электросети на выходе появляется постоянное напряжение, близкое по значению к входному напряжению СН! И пока разряжается (через нагрузку СН) батарея оксидных конденсаторов мостового выпрямителя СН, неизвестно, что может произойти в аппаратуре, подключенной к выходу такого БП. Самое неприятное заключается в том, что ни об этом негативном явлении, ни о возможных вариантах устранения этого недостатка нет даже упоминания. В схеме данного СН предложен схемотехнический вариант решения этой проблемы.

При разработке данной конструкции учитывались следующие принципы:

1. Не следует стремиться усложнять схемы своих конструкций, если не забывать о возможных ремонтных работах, которые, рано или поздно, все равно предстоит осуществлять.

2. Лучше потратиться на приобретение более современных комплектующих, если они упрощают конструкцию блока питания нежели мучиться с изготовлением сложных конструкций БП на большом количестве комплектующих.

3. Есть смысл в изготовлении нескольких экземпляров БП, даже если в обозримом будущем они и не потребуются. Как минимум, нужно иметь несколько БП, изготовленных на разные выходные токи и напряжения. Повсеместная эксплуатация одного мощного блока питания приводит к его ускоренному выходу из строя.

Схема блока питания

Учитывая выше изложенное, была разработана схема, на основе которой можно изготовлять блоки питания различной мощности. Схема рассматриваемого СН приведена на рис.1. Основой данного СН является операционный усилитель (ОУ) типа LM358N.

Эти ОУ стали весьма распространены благодаря их способности работать в в особом режиме при однополярном питающем напряжении. Не в последнюю очередь распространению данных ОУ способствовало повсеместное их применение и в самых разных конструкциях малогабаритных цифровых мультиметров.

Собственно стабилизатор напряжения выполнен на половинке данного ОУ DA1. 1. На втором ОУ DA1.2 выполнена защита по выходному току СН.

Рассмотрим назначение основных элементов схемы и особенности номиналов некоторых ее деталей. Как видно из рис.1, питание ОУ осуществлено непосредственно от одного общего выпрямителя блока питания. Благодаря использованию данного типа ОУ удалось избежать усложнения схемы СН в целом. То есть, за счет отсутствия в необходимом отрицательном (относительно общей шины питания) источнике напряжения для питания ОУ удалось дополнительно упростить схему СН. Благодаря применению программируемого (прецизионного) стабилитрона (микросхемы) типа TL431 удалось упростить и схему источника опорного напряжения (ИОН). Оказалось возможным отказаться и от каких-либо генераторов стабильного тока (ГСТ), питающих этот стабилитрон.

Опорное напряжение снимается с ИОН, выполненного на ИМС типа TL431 (VD1) и с движка переменного резистора R4, являющегося регулятором выходного напряжения СН, поступает на неинвертирующий вход ОУ DA1. 1. На инвертирующий вход (вывод 2 ОУ) DA1.1 подается часть выходного напряжения, которая снимается с резисторного делителя напряжения R8R6.

С этого же ИОН напряжение снимается и на узел электронной защиты СН, который выполнен на второй половине LM358N (DA1.2) и через резисторный делитель напряжения R11R14 подается на переменный резистор R12, который является регулятором для установки требуемого значения максимального выходного тока СН.

Таким образом, входы данного ОУ подключены к мощному резистору R17, являющемуся датчиком тока для защитного узла СН. От величины напряжения на движке переменного резистора R12 и от сопротивления резистора R17 зависит величина тока ограничения СН (выходного стабильного тока СН).

Чем больше значение этого напряжения и чем меньше сопротивление резистора датчика тока R17, тем больше будет и величина выходного тока СН.

Схема на ОУ DA1.2 представляет собой компаратор напряжения, сравнивающий опорное напряжение на движке переменного резистора R12 с падением напряжения на датчике тока - R17. Если точнее, то компаратор сравнивает эти напряжения по величине, и в зависимости от того, какое из напряжений больше по величине, изменяется и величина напряжения на выходе этого ОУ. Когда выходной ток ниже порога срабатывания компаратора (в зависимости от положения движка резистора R12), то напряжение на инвертирующем входе ОУ меньше, чем на резисторе R17, а значит, и на неинвертирующем входе ОУ. На выходе ОУ при этом низкое напряжение (не более 0,1…О,2 В), недостаточное для открывания транзисторов VT3 и VT4. При этом светодиод HL1, являющийся индикатором срабатывания узла защиты, не светится и защита не оказывает никакого влияния на ограничение выходного тока СН.

Как только напряжение на датчике тока R17 превысит величину напряжения на инвертирующем входе ОУ (ориентировочно на значение напряжения смещения ОУ) , компаратор изменит свое состояние и на его выходе появится большое напряжение, приближающееся по величине к питающему напряжению ОУ (за вычетом примерно 1,5В). Включится защитный транзистор VT3 и своим открытым переходом коллектор-эмиттер замкнет точку соединения резисторов R9 R10 на общий провод схемы СН. База мощного составного транзистора VT1-VT2 оказывается обесточенной и подключенной к общему проводу СН. Поскольку эмиттер VT2, так или иначе, (при помощи внешней нагрузки СН или посредством генератора стабильного тока на транзисторе VT5) уже соединен с общим проводом схемы СН, то составной транзистор принудительно закрывается. В зависимости от ситуации (нагрузки СН), от величины выходного тока и напряжения, на выходе получается режим стабилизации напряжения или режим стабилизации (ограничения) тока.

Как видно из схемы, лишь некоторые типы ОУ смогут нормально работать в подобном режиме с однополярным питающим напряжением, поскольку обычному ОУ потребуется установка «средней точки» питающего напряжения на его входах, что непременно приведет к появлению на выходе ОУ около половины напряжения его питания. Это, в свою очередь, нарушит функционирование защиты в целом. Очевидно, что приспособить обычный ОУ в данной схеме проще всего, применив для него двуполярное напряжение питания.

При однополярном питании могут работать еще такие ОУ, как, например, LM324N. В одном корпусе этого ОУ размещено четыре ОУ. Согласно источнику , внутренняя схемотехника рассматриваемых ОУ схожа. На LM324N также можно пробовать собирать данный СН по схеме рис.1. Основное требование к ОУ в схеме компаратора DA1.2 заключается в том, чтобы на его выходе было минимальное напряжение, когда защита не включена. В принципе, аналогичные требования выдвигаются и в отношении ОУ самого СН DA1.1. Только выполнив данное требование, можно обеспечить надежное запирание защитного транзистора VT3. Здесь уместны очень важные комментарии.

Настоящие «подводные камни» ожидают нас в процессе приобретения зарубежных комплектующих, в том числе и с ИМС типа LM358N, где дефекты могут быть самыми разнообразными. Многие дефекты этих ОУ проявляются лишь после их установки в рабочую конструкцию. Если же проводятся эксперименты с такими экземплярами LM358N, то Зачастую неудачи при макетировании (практическом конструировании) люди списывают на иные факты, например на «сырую» (несовершенную) схемотехнику в используемых конструкциях. А на самом деле использованный экземпляр LM358N имел «скрытый» дефект и просто вышел из строя. Очень важно проверять LM358N еще до установки в печатную плату.

Самый распространенный дефект таких ОУ, как LM358N - полная (очевидная) неисправность одного из двух ОУ, когда, например, на выходе одного ОУ отсутствует напряжение. Оно не появляется при любом сочетании напряжений на входах ОУ. Это самая типичная ситуация. Встречались и такие экземпляры LM358N, у которых выходное напряжение превышало «нулевое» значение и находилось в пределах от нуля до нескольких вольт. Реже встречались экземпляры LM358N с «неуправляемым» (по входам) выходным напряжениям от 1 В и вплоть до почти полной величины питающего LM358N напряжения.

Скрытыми и неожиданными являются такие дефекты LM358N, при которых выходной каскад LM358N выходит из строя, чаще всего «обрыв» выходного каскада, причем раньше, чем выходной ток LM358N достигнет значения 5мА. Было четко подмечено, что ОУ перестают выходить из строя, если выходной ток LM358N ограничить на уровне ЗмА. Стало очевидно, что есть смысл и в дальнейшей минимизации выходного тока LM358N. Не сомневаясь в том, что есть смысл всегда использовать ОУ при его выходном токе не более ЗмА.

Применяя транзисторы VT3 и VT4 в схеме СН (рис.1), достигли решения описанной проблемы LM358N.

Рекомендации, спасающие некачественный выходной каскад LM358N от вероятного отказа, использованы и в отношении ОУ DA1.1, где его выходной каскад работает на достаточно высокоомную нагрузку, представленную резистором R9, правый вывод которого соединен с общим проводом, если сработала защита. Этот случай является самым «тяжелым» для выходного каскада DA1.1, но и такой режим работы ОУ имеет место лишь при работе СН в режиме ГСТ. В обычном же режиме эксплуатации СН нагрузка ОУ DA1.1 дополнительно уменьшается (сопротивление нагрузки увеличивается). Теперь ОУ работает на суммарное сопротивление резисторов R9, R10 и входное сопротивление составного транзистора Дарлингтона VT1, VT2. Последняя составляющая формируется базовым током VT1, VT2, который незначителен при токе нагрузки СН, на который первоначально рассчитана схема СН (до ЗА).

Базовый ток транзистора VT1 не превышает и сотни микроампер в самом неблагоприятном стечении обстоятельств, когда ток нагрузки СН максимален, а усиление по постоянному току транзисторов Дарлингтона минимальное. Именно большое, с надлежащим запасом, усиление этих транзисторов позволило кардинально увеличить сопротивление резистора R9 без опасения в существенном нарушении характеристик СН.

Предлагаемое построение схемы СН имеет еще одно положительное качество, заключающееся в надежной работе узла защиты. Ситуация такова, что ОУ DA1.1, задействованный в схеме регулирования напряжения, не участвует в петле (схеме) регулирования (ограничения) тока.

Этим ОУ DAI.1 исключается из тракта защиты, что благоприятно сказывается на быстродействии защиты в целом. В случае, когда DAI.1 будет управляться посредством компаратора DA1.2 при ограничении тока, ситуация будет иная, не в пользу вышесказанного.

Конденсатор С1, замыкающий инвертирующий вход ОУ с его выходом, является непременным атрибутом в данной схеме СН. Без него устойчивая работа компаратора, как впрочем, и всего СН станет нарушаться. В итоге схема компаратора самовозбуждается.

Это явление имеет влияние и на схему самого СН, даже когда порог срабатывания компаратора отстоит далеко от величины тока на выходе СН.

Нечто аналогичное справедливо и в отношении цепей коррекции ОУ DA1.1, а именно в отношении элементов обвязки ОУ R7, С2.

Никоим образом нельзя забывать о том, что корректирующие цепи ОУ, включенные между входом и выходом ОУ, могут представлять серьезную нагрузку для выходного каскада ОУ. Нагрузка реактивная, т.е. с ростом частоты растет нагрузка по выходу ОУ. В нашем случае, применительно к LM358N, эти цепи коррекции являются настоящей угрозой для выходного каскада. Почему в схеме (рис.1) установлен довольно высокоомный резистор R7 последовательно с корректирующим конденсатором С2. Здесь недостаточно такой малой емкости, как в схеме компаратора на DA1.2.

Если по каким-то причинам данная цепь не будет установлена, то нормальное функционирование схемы СН будет нарушено. Сказанное справедливо с небольшой оговоркой. На постоянном токе СН может работать вполне пристойно и без корректирующей цепи R7C2. Устойчивость может сохраняться также и при работе СН на низких частотах (десятки-сотни герц), но с повышением частоты в нагрузке, при импульсном потреблении тока нагрузкой, ситуация способна измениться кардинально. Однако и на низких частотах на выходе DA1.1 уже появятся «следы» самовозбуждения, т.е. в этом состоит некий подвох, поскольку на выходе самого СН все может выглядеть вполне пристойно, и осциллографом сложно будет что- либо диагностировать на выходе СН.

Если амплитуда этих пульсаций незначительная, то на них, как правило, не обращают внимания. Нередко для наблюдения ВЧ генерации в СН нужен и осциллограф с более широкой полосой пропускания (не менее 10 МГц, а иногда требуется и 50 МГц прибор).

При импульсном характере нагрузки ситуация меняется кардинально, и из скрытого режима «подвозбуждения» ОУ DA1.1 уже может (в зависимости от частоты и параметров импульсного сигнала) переходить в самый обычный режим самовозбуждения, когда на испытательный импульс станет накладываться «добавка» от ОУ DA1. 1. Такое явление обычно уже хорошо заметно на экране осциллографа. Вот почему любую конструкцию никогда не помешает проверить на импульсной нагрузке. Только в том случае, если мы обнаружим и получим режим «звона» («подвоз- буждения») стационарного характера, мы сможем оценить его параметры и устранить.

Нередко проблема имеет место в некотором ограниченном диапазоне частот, в каком-то частном режиме работы или же с нагрузкой определенного характера.

Здесь также необходимы определенные уточнения. Речь идет не только о техпоследствиях, к которым приводит импульсная нагрузка на выходе СН, но и, в первую очередь, имеется в виду нарушение режимов работы (в виде самовозбуждения и т.п.) в самой схеме СН.

Данное уточнение необходимо с той целью, чтобы не возникало путаницы с теми возмущениями, к которым приводит импульсная нагрузка только на выходе СН, не нарушая при этом режимов работы непосредственно в схеме СН.

Конструкция СН может быть произвольной, все зависит от используемых деталей и возможностей радиолюбителя. Следует помнить, что питающее СН напряжение, равное 30 В, является близким к максимально допустимому для LM358N, предельно допустимое для которой составляет 32 В. Если нужно получить более высокое значение выходного напряжения СН, то в схему СН необходимо внести некоторые изменения, о чем будет сказано далее.

Схема СН рис.1 позволяет использовать практически любой имеющийся малогабаритный сетевой трансформатор на соответствующее напряжение, не прибегая к намотке дополнительных обмоток. Выбор трансформатора всецело зависит от параметров СН.

Детали блока питания

Резисторы: R1 - 2,7 кОм; R2, R5-R7, R15, R16 - 10 кОм; R3 - 5,1 кОм; R4, R12 - 33 кОм; R8, R9 - 15 кОм; RIO, R20, R21 - 4,7 кОм; R11 - 10 кОм; R13 - 1 кОм (подборный); R14 - 620 Ом; R17 - 0,12 Ом; R18, R19 - 30 кОм; R22 - 30 Ом.

Резистор R1 типа МЛТ - 0,5 Вт; R4, R12 - СПЗ-23в-А - 0,25Вт; R11 - СПЗ-38в; R17 - мощный (5 Вт) проволочный зарубежного производства.

Конденсатор CI, С2 - К10-176; С4 - 470 мкФ х 25В - К50-29В.

В конструкциях СН присутствуют также еще несколько конденсаторов, которые не показаны на рис.1. Один конденсатор припаян параллельно питающим выводам LM358N (выводы 4 и 8), его емкость в пределах 0,068…0,1 мкФ (керамический). А второй конденсатор припаян параллельно выходным клеммам СН, его емкость выбиралась в пределах 4,7…10 мкФ (1-2 шт. К73-17х63В).

Оксидный конденсатор СЗ (100 мкФ х 63 В) импортный. Он припаян параллельно штатным оксидным конденсаторам мостового выпрямителя. Еще один такой оксидный конденсатор припаян параллельно выводам анод-катод TL431.

Микросхему ИОН - VD1 - TL431 можно заменить другим интегральным стабилизатором напряжения (учитывая ее максимально допустимое входное напряжение), не Забывая об ухудшении ТКН в ИОН. Допустимо использование прецизионного стабилитрона, например, Д818Е, но нужно помнить, что стабильность такого ИОН целиком будет определяться стабильностью тока через него. Обязательно применение высокостабильного ГСТ (вместо резистора R1), если Д818Е будет запитан от основного выпрямителя СН.

В случае, когда к ИОН на TL431 предъявляются повышенные требования в отношении стабильности напряжения ИОН, резистор R1 также нужно заменить ГСТ. В данном случае ГСТ выполняли по простейшей схеме на одном полевом транзисторе, типа КПЗОЗД, в цепи истока которого установлен резистор 510 Ом (подбирали для достижения тока ГСТ, примерно равного 2 мА) . Полевой транзистор должен удовлетворять двум важным требованиям: напряжение (сток-исток и затвор-сток) не менее 25 В и начальный ток стока не меньше 2 мА. Этот ГСТ можно заменить биполярным вариантом, собранным аналогично схеме ГСТ в рис.1 на транзисторе VT5, с той лишь разницей, что в 10-15 раз увеличивали сопротивление резистора R22 до получения требуемого тока ГСТ, а вместо транзистора средней или большой мощности в новом ГСТ использовали маломощные КТ315Б (Г) , а также ВС547С или КТ3102 с любым буквенным индексом.

Схема ГСТ при питании TL431 особенно выручает тогда, когда изготавливали СН на ток 6А и более, поскольку при большом токе СН появляются повышенные просадки напряжения на выпрямителе, от которого запитана схема нашего ИОН. Минимизировать нестабильность тока через ИОН, вызванную этими просадками напряжения, призвана схема дополнительного ГСТ.

Отсюда и вытекает важность всех без исключения схемотехнических «мелочей».

Транзисторы VT3 и VT4 типа КТ315Г (под установку которых рассчитана печатная плата СН) или любые другие кремниевые с икэ.макс не менее 35 В и h2ia не менее 100. В качестве VT1 использован зарубежный транзистор ВС547С. Эти транзисторы, несмотря на дешевизну, имеют большое и стабильное, практически неизменное усиление (обычно около 500) при токах коллектора в пределах до 50мА. Его можно заменить любым аналогичным, например из серии КТ3102 (h2ia не менее 200 и икэ.макс не менее 35 В) . Транзистор VT2 типа КТ827 с любым буквенным индексом. Вместо него можно применить и его аналог, собранный на двух транзисторах: КТ8101 и КТ817 (или КТ815) по внутренней схеме Дарлингтона самого КТ827.

Ситуация такова, что внутри КТ827 присутствуют не только резисторы, шунтирующие базо-эмиттерные переходы обоих транзисторов, но и два диода, важную функцию из которых выполняет диод, защищающий переход коллектор-эмиттер более мощного транзистора (КТ8101) от напряжения противоположной полярности.

В случае замены КТ827 транзистором КТ829 или зарубежным транзистором BDX53C (аналог КТ829) максимальный ток СН нужно снижать вдвое (до 1,5А) . Транзистор ГСТ VT5 типа КТ815, КТ817, КТ819 с буквенными индексами В или Г. Его можно Заменить другими аналогичными, например КТ802, КТ803, КТ805, КТ808 и т.д.

Светодиод HL1 - зарубежный, дешевой ценовой категории, красного цвета свечения, HL2 - тоже дешевый зарубежный, зеленого цвета свечения.

Печатная плата блока питания

Один из вариантов печатной платы стабилизатора показан на рис.2 и рис.3.



Не ставилась задача создания миниатюрной платы, поэтому на ней немало свободного пространства. При этом облегчается выполнение рисунка платы обычными методами, например, с помощью нитрокраски.

Транзистор VT2 устанавливали на эффективном теплоотводе с охлаждающей поверхностью в пределах 1500…2000 см2, если в конструкции не применяли принудительное охлаждение (обдув вентилятором). В последнем случае площадь тепло- отвода была в 5-6 раз меньше. Транзистор источника тока VT5 устанавливали на малогабаритном пластинчатом радиаторе площадью 25 см2. Элементы схемы ГСТ расположены за пределами платы.

Все конструкции блоков питания оснащены системами устранения бросков тока в цепи электросети (первичной обмотки СТ), которые собирались по схеме .

Испытывать СН на переменном токе (с динамической нагрузкой СН) можно по очень простой схеме на мощном полевом транзисторе типа IRFZ48N, который управляется (коммутируется) выходным сигналом измерительного генератора (ГЗ- 112). Схема и описание этой конструкции приведены в статье .

Налаживание блока питания

Налаживают схему в два этапа. Начинают со схемы на DAI.1, а затем приступают к наладке системы защиты. Хотя можно поступить и наоборот, поскольку схема СН без защиты становится уязвимой при токовых перегрузках и замыканиях в нагрузке.

Для указанных на схеме номиналов элементов выходное напряжение СН составляет 18 В. Если нужно, то его корректируют подбором номиналов резисторов R3 (R2) или R6 (R7). Немного проще изменять величину напряжения ИОН, чем менять схему СН. Если нужно иметь повышенную стабильность напряжения СН, то эти резисторы должны быть прецизионными.

Настройка узла защиты начинается с выбора и установки максимального тока защиты. Для облегчения данной процедуры в печатной плате предусмотрена установка взамен постоянного резистора R11 подстроечного 10 кОм типа СПЗ-38в.

При использовании другого номинала резистора R17 (например, 0,1 Ом вместо 0,12 Ом) придется, возможно, подобрать и резистор R14.

Для максимального тока защиты, равного ЗА, величина напряжения ИОН для защиты (на резисторе R14)должна составлять 450 мВ.

В качестве простого ориентира при перерасчете узла защиты руководствовались следующими рассуждениями. Поскольку напряжение ИОН на резисторе R14 определяет максимальный ток защиты, то это напряжение должно всегда быть больше падения напряжения на датчике тока R17 при максимальном токе. Естественно, это напряжение ИОН должно быть с запасом.

Нужно помнить, что в качестве R17 следует применять достаточно стабильные резисторы. В противном случае, если сопротивление резистора R17 станет изменяться с прогревом, то будет изменяться и величина тока защиты, установленного резистором R12. Поэтому с целью снижения нестабильности сопротивления R17 нужно снижать его температуру, для чего используют резистор с запасом по рассеиваемой мощности или применяют использование нескольких однотипных резисторов, например четыре одинаковых резистора, которые включали параллельно и последовательно, чтобы общее сопротивление четырех резисторов было равно со- противлению одного резистора. Суммарная максимальная мощность возрастает вчетверо, значительно увеличивается и стабильность сопротивления при воздействии температуры, поскольку на каждом резисторе рассеиваемая мощность уменьшается в четыре раза. По этой же причине, в качестве резисторов Rll, R14 и R17 следует применять стабильные резисторы.

Как видно, схему можно адаптировать под любое значение тока нагрузки СН. Если необходимо реализовать более точную установку тока защиты при малых величинах токов, то потребуется введение поддиапазона, в котором напряжение ИОН будет изменяться в ограниченном интервале. Для тока защиты 0…300 мА напряжение ИОН составляло 0 - 50…70 мВ, что значительно повышает удобства работы СН с маломощными нагрузками.

Большой интерес вызывает возможность увеличения тока в нагрузке. Удвоить максимальный ток СН можно параллельным включением еще одного транзистора типа КТ827. С этой целью коллекторы обоих транзисторов (VT2 и дополнительного) соединяют параллельно, но эмиттеры и базы обоих транзисторов должны быть разделены между собой.

Дело в том, что одними лишь эмиттерными резисторами невозможно поровну распределить коллекторные токи обоих КТ827. Поэтому, как в базовые цепи, так и в цепи эмиттеров необходимо включать выравнивающие резисторы персонально для каждого экземпляра КТ827. Для двух экземпляров КТ827 максимальный выходной ток защиты СН устанавливали равным 6…7А, что в большинстве практических случаев уже достаточно.

Следует помнить о том, что при обдуве радиатора температура будет значительно ниже, чем у массивного радиатора без такого охлаждения, следовательно, и реальная (при конкретной температуре КТ827) максимально допустимая рассеиваемая мощность КТ827 при обдуве будет большей.

Кроме того, использование вентиляторов обдува позволяет получить и серьезный выигрыш в плане массогабаритных показателей за счет весьма «скромных» и недорогих в приобретении радиаторов. Учитывая чрезмерно высокие цены на массивные радиаторы, получаем еще выигрыш и в материальных затратах, так как кулеры сегодня можно приобрести по невысоким ценам.

Доброго времени суток форумчане и гости сайта Радиосхемы ! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, . В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А - минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом - ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие - раньше ограничить ток.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге - смотрите далее.

У шины питания Vbus (+5 В) USB-порта по потребляемому от неё внешним устройством мощности параметры весьма скромные и если немного переборщить, то можно спалить материнскую плату персонального компьютера.

С помощью предлагаемой схемы блока питания для USB порта, можно подсоединить к компьютеру или ноутбуку внешнее USB-устройство, потребляющее большую мощность.

Схема достаточно проста в изготовлении в домашних условиях, минимум дефицитных деталей и настройки. Стабильна в работе.

Подборка схем и конструкций преобразователей напряжения изготовленных своими руками.

Рано или поздно перед радиолюбителем возникает проблема изготовления универсального БП, который пригодился бы на все случаи жизни. То есть имел достаточную мощность, надёжность и регулируемый в широких пределах, к тому же защищал нагрузку от чрезмерного потребления тока при испытаниях и не боялся коротких замыканий.

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками.

Основу аналоговой части составляет дифференциальный усилитель, собранный на операционном усилителе DA1. Конструкция его произвольная. Все зависит от вкуса и способностей радиолюбителя

Им можно подсоединить любую радиолюбительскую разработку с напряжением от 1 до 35 В и которой не боится больших токов нагрузки, поскольку введена токовая защита

Представляю вниманию радиолюбителей варианты схем и конструкций простых и не очень, удобных и надежных лабораторных блоков питания для домашней мастерской. В просторах интернета, можно найти много схем лабораторных БП, поэтому данные схемы никак не претендует на шедевр, а призвана лишь помочь радиолюбителям, немного оснастить свою мастерскую или рабочее место. Также рассмотрены варианты переделки компьютерных ATX блоков питания в лабораторные

По структуре предлагаемое вниманию читателей разработка не новодел: выпрямитель, - конденсаторный фильтр - полумостовой преобразователь постоянного напряжения в переменное (с понижающим трансформатором) - выпрямители - фильтры - стабилизаторы

Проще некуда, схема состоит из понижающего трансформатора, выпрямительного моста на Д242, стабилизатора напряжения и трех транзисторов КТ827

Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками - сетевыми, импульсными и аккумуляторными батареями. Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем.

Рассмотрено несколько вариантов схем защиты от переполюсовки, в.т.ч быстродействующая схема зашиты на полевом транзисторе, которая проверена в работе в конструкции автомобильного ЗУ собранного своими руками из компьютерного БП и главное она не требуют почти никакой настройки и регулировки.

Эта схема регулятора тока предельно проста и выполнена на доступной элементной базе и проста в управлении

У меня реализована такая идея. Перематываете трансформатор максимально большой мощности (из имеющихся у вас) так, чтобы сделать восемь вторичных обмоток

Эту схему блока питания вы можете использовать для запитки цифровых устройств. Схема дополнена вольтметром для контроля и регулировки параметров

Cхемы умножителей напряжения позволяют значительно снизить вес и габариты финального устройства. Для понимания работы любого умножителя напряжения, рассмотрим принципы построения таких устройств. Их можно условно поделить на симметричные и несимметричные.

С выходной мощностью до 220 Ватт, в качестве батареи взяли аккумулятор от автомобиля

Его можно использовать для запитки фотоэлектронного умножителя, но от него можно запитать счетчик Гейгера и другие высоковольтные приборы.

Роль регулирующего элемента в схеме выполняет мощный транзистор, причем конструкция на столько проста, что ее может повторить любой, даже неопытный радиолюбитель, затратив при этом минимум времени и средств

Данная радиолюбительская разработка моментально уменьшает питание до нуля на обоих плечах, и таким образом обладает триггерным эффектом

Его можно использовать для любых радиотехнических исполнений с напругой 4,5-6 В, 9 В и током потребления до 500 мА

Этот БП имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может выйти из строя

В момент включения блока питания в сеть осуществляется выпрямление переменного напряжения электросети диодным мостом, пульсацию от которого сглаживается емкостным фильтром на конденсаторах. Для снижения величины тока заряда, проходящего через эти конденсаторы, в схему добавлен резистор. Затем выпрямленное напряжение поступает на полумостовой инвертор, построенный на транзисторах.

Краткие теоретические сведения о построение и работе источников бесперебойного питания, а также рассмотрена конструкция самодельного ИБП

Электронная конструкция с некоторой периодичностью разряжает мощную конденсаторную батарею на индуктор, потом на следующий, и так по цепочке

Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора.

В российской глубинке до сих пор случается частое отключение электроэнергии, что серьезно меняет устаканившийся образ жизни в нелучшую сторону. Решить возникшую проблему очень легко.

Рано или поздно у любого радиолюбителя возникнет надобность в мощном БП как для проверки различных электронных узлов и блоков, так и для подключения мощных радиолюбительских самоделок.


Регулировать значения уровня напряжение питания можно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество такой настройки состоит в том, что выходной транзистор работает в режиме ключа и может быть только в двух состояниях - открытом или закрытом, что исключает его перегрев, а значит использование большого радиатора и как следствие снижает расходы на электроэнергию.

Аккумуляторную батарею любого мобильного компьютера, требуется периодически заряжать, а как это можно сделать находясь на отдыхе или на рыбалке. Очень даже просто, вам достаточно собрать и использовать обычный автомобильный адаптер для бортовой сети автомобиля, собрать который очень легко и просто.

Этот преобразователь с двухполярным питанием отлично подойдет для питания УНЧ средней мощности до 150 ватт, но если поменять ключи на более мощные можно получить и более высокие значения.

Для проверки и регулировки мощных блоков питания необходима низкоомная регулируемая нагрузка с допустимой мощностью рассеивания до сотни ватт. Применение переменных сопротивлений не всегда реально, в основном из-за мощности допустимой рассеивания.

Если у вас есть всего один мощный транзистор, то этого вполне достаточно, чтобы собрать простой блок питания с выходным напряжением 9В и с приемлемыми характеристиками, кроме того рассмотрим в рамках данной статьи конструкции и поинтересней.

В сельской местности для безопасного использования бытовой техники, требуется однофазный стабилизатор напряжения 220В, который при сильной просадки напряжения в сети поддерживает на выходе номинальное выходное напряжение в 220 вольт.

Блок питания автомагнитолы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:



Top